Regulation of Spine Calcium Dynamics by Rapid Spine Motility
نویسندگان
چکیده
منابع مشابه
Regulation of spine calcium dynamics by rapid spine motility.
Dendritic spines receive most excitatory inputs in the CNS and compartmentalize calcium. Spines also undergo rapid morphological changes, although the function of this motility is still unclear. We have investigated the effect of spine movement on spine calcium dynamics with two-photon photobleaching of enhanced green fluorescent protein and calcium imaging of action potential-elicited transien...
متن کاملCalcium dynamics in dendritic spines and spine motility.
A dendritic spine is an intracellular compartment in synapses of central neurons. The role of the fast twitching of spines, brought about by a transient rise of internal calcium concentration above that of the parent dendrite, has been hitherto unclear. We propose an explanation of the cause and effect of the twitching and its role in the functioning of the spine as a fast calcium compartment. ...
متن کاملRegulation of dendritic spine motility in cultured hippocampal neurons.
Regulation of dendritic spine motility was studied in dissociated cultures of the rat and mouse hippocampus, using green fluorescent protein-labeled neurons or neurons loaded with the calcium-sensitive dye Oregon Green-1. Cells were time-lapse-photographed on a confocal laser-scanning microscope at high resolution to detect movements as well as spontaneous fluctuations of intracellular calcium ...
متن کاملDendritic spine dynamics.
Dendritic spines are the postsynaptic components of most excitatory synapses in the mammalian brain. Spines accumulate rapidly during early postnatal development and undergo a substantial loss as animals mature into adulthood. In past decades, studies have revealed that the number and size of dendritic spines are regulated by a variety of gene products and environmental factors, underscoring th...
متن کاملCalcium-mediated spine stem restructuring
A spine is a protrusion from the dendritic (or somatic) surface of a neuron. In recent experiments, caffeine-induced calcium released from internal stores was shown to cause elongation of dendritic spine stems in slice cultures. Still another experiment indicates that glutamate-induced increases in calcium may cause spine stem shortening. Harris draws a schematic model to explain these seemingl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Journal of Neuroscience
سال: 2000
ISSN: 0270-6474,1529-2401
DOI: 10.1523/jneurosci.20-22-08262.2000